Non-Asymptotic Analysis of Relational Learning with One Network
نویسندگان
چکیده
This theoretical paper is concerned with a rigorous non-asymptotic analysis of relational learning applied to a single network. Under suitable and intuitive conditions on features and clique dependencies over the network, we present the first probably approximately correct (PAC) bound for maximum likelihood estimation (MLE). To our best knowledge, this is the first sample complexity result of this problem. We propose a novel combinational approach to analyze complex dependencies of relational data, which is crucial to our non-asymptotic analysis. The consistency of MLE under our conditions is also proved as the consequence of our sample complexity bound. Finally, our combinational method for analyzing dependent data can be easily generalized to treat other generalized maximum likelihood estimators for relational learning.
منابع مشابه
Relational Learning with One Network: An Asymptotic Analysis
Theoretical analysis of structured learning methods has focused primarily on domains where the data consist of independent (albeit structured) examples. Although the statistical relational learning (SRL) community has recently developed many classification methods for graph and network domains, much of this work has focused on modeling domains where there is a single network for learning. For e...
متن کاملRevenue - Profit Measurement in Data Envelopment Analysis with Dynamic Network Structures: A Relational Model
The correlated models are introduced in this article regarding revenue efficiency and profit efficiency in dynamic network production systems. The proposed models are not only applicable in measuring efficiency of divisional, periodical and overall efficiencies, but recognizing the exact sources of inefficiency with respect to revenue and profit efficiencies. Two numerical examples, consisting ...
متن کاملIntroducing a Relational Network DEA Model with Stochastic Intermediate measures for Portfolio Optimization
متن کامل
Social Network Mining with Nonparametric Relational Models
Statistical relational learning (SRL) provides effective techniques to analyze social network data with rich collections of objects and complex networks. Infinite hidden relational models (IHRMs) introduce nonparametric mixture models into relational learning and have been successful in many relational applications. In this paper we explore the modeling and analysis of complex social networks w...
متن کاملSolving a non-convex non-linear optimization problem constrained by fuzzy relational equations and Sugeno-Weber family of t-norms
Sugeno-Weber family of t-norms and t-conorms is one of the most applied one in various fuzzy modelling problems. This family of t-norms and t-conorms was suggested by Weber for modeling intersection and union of fuzzy sets. Also, the t-conorms were suggested as addition rules by Sugeno for so-called $lambda$–fuzzy measures. In this paper, we study a nonlinear optimization problem where the fea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014